On the Optimality of Two-stage Kalman Filtering for Systems with Unknown Inputs

نویسنده

  • Chien-Shu Hsieh
چکیده

This paper is concerned with the optimal solution of two-stage Kalman filtering for linear discrete-time stochastic time-varying systems with unknown inputs affecting both the system state and the outputs. By means of a newlypresented modified unbiased minimum-variance filter (MUMVF), which appears to be the optimal solution to the addressed problem, the optimality of two-stage Kalman filtering for systems with unknown inputs is defined and explored. Two extended versions of the previously proposed robust two-stage Kalman filter (RTSKF), augmented-unknown-input RTSKF (ARTSKF) and decoupled-unknown-input RTSKF (DRTSKF), are presented to solve the general unknown input filtering problem. It is shown that under less restricted conditions, the proposed ARTSKF and DRTSKF are equivalent to the corresponding MUMVFs. An example is given to illustrate the usefulness of the proposed results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified Solution to Unbiased Minimum-Variance Estimation for Systems with Unknown Inputs

A parameterized three-stage Kalman filter (PTSKF) is proposed, serving as a unified solution to unbiased minimum-variance estimation for systems with unknown inputs that affect both the system and the outputs. The PTSKF is characterized by two design parameters and includes three parts: one is for the main system state estimate, the second is for the optimal unknown inputs estimate, and the las...

متن کامل

Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs

The paper studies the problem of simultaneously estimating the state and the fault of linear stochastic discrete-time varying systems with unknown inputs. The fault and the unknown inputs affect both the system state and output. However, if the dynamical evolution models of the fault and the unknown inputs are available the filtering problem is solved by the Optimal Three-Stage Kalman Filter (O...

متن کامل

H∞ Kalman filtering for rectangular descriptor systems with unknown inputs

This paper considers H∞ filtering for rectangular descriptor systems with unknown inputs that affect both the system and the output. An optimal H∞ filter is developed based on the maximum likelihood descriptor Kalman filtering (DKF) method. The developed H∞ filter serves as a unified solution to solve H∞ and Kalman filtering for descriptor systems and standard systems with or without unknown in...

متن کامل

Scale Efficient Targets in Production Systems With Two-stage Structure Under Imprecise Data Assumption

Traditional data envelopment analysis (DEA) models evaluate two-stage decision making unit (DMU) as a black box and neglect the connectivity may exist among the stages. This paper looks inside the system by considering the intermediate activities between the stages where the first stage uses inputs to produce outputs which are the inputs to the second stage along with its own inputs. Additional...

متن کامل

On Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)

In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010